V = 1631.67 (5) Å³

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

11808 measured reflections

3255 independent reflections

3166 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Cu Ka radiation $\mu = 1.89 \text{ mm}^{-1}$

Z = 4

T = 100 K

 $R_{\rm int} = 0.018$

refinement

 $\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(3-Methyl-4,5-dihydro-1*H*-benzo[g]indazol-1-vl)benzenesulfonamide

Abdullah M. Asiri,^{a,b} Hassan M. Faidallah,^a Abdulrahman O. Al-Youbi,^a Mohamad S. I. T. Makki^a and Seik Weng Ng^{c,a}*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ^bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and CDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 August 2011; accepted 16 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.068; wR factor = 0.184; data-to-parameter ratio = 14.4.

In the title compound, C₁₈H₁₇N₃O₂S, the aromatic ring bearing the sulfamide unit is aligned at $61.65 (1)^{\circ}$ with respect to the pyrrole ring; its amino group forms $N-H \cdots N$ and N-H $H \cdots O$ hydrogen bonds to neighboring molecules, generating sheets in the ac plane.

Related literature

For the crystal structure of a pyrrole synthesized using 2acetyltetralone as a reactant, see: Portilla et al. (2007).

Experimental

Crystal data

C ₁₈ H ₁₇ N ₃ O ₂ S	
$M_r = 339.41$	
Monoclinic, $P2_1/n$	
a = 4.8838(1) Å	
<i>b</i> = 27.3894 (4) Å	
c = 12.2399 (2) Å	
$\beta = 94.738 \ (1)^{\circ}$	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.600, \ T_{\max} = 0.703$

Refinement

Table 1

LI.	dragan han	1 goomotry	(Å	0)
11	ulogen-bond	1 geometry	(A,	,

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots N3^{i}$ $N1-H2\cdots O2^{ii}$	0.88(1) 0.88(1)	2.05 (1) 1.95 (2)	2.925 (4) 2.806 (4)	173 (5) 165 (4)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5614).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, 0458-0461.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o2441 [doi:10.1107/S1600536811033186]

4-(3-Methyl-4,5-dihydro-1*H*-benzo[g]indazol-1-yl)benzenesulfonamide

A. M. Asiri, H. M. Faidallah, A. O. Al-Youbi, M. S. I. T. Makki and S. W. Ng

Comment

Among the wide range of compounds tested for medicinal properties, the compounds having the benzenesulfonamide unit that is grafted to pyrazoles, a class of chemotherapeutically active heterocycles, are expected to exhibit enhanced activity. The ketone, 2-acetyl-tetralone, condenses with a variety of primary amines such as 5-amino-3-methyl-1*H*-pyrazole and 5-amino-3-*tert*-butyl-1*H*-pyrazole (Portilla *et al.*, 2007). However, with 4-hydrazinobenzenesulfamide, the ketone yields a conventional Schiff base that cyclizes to form a pyrazole in a one-pot synthesis. In $C_{18}H_{17}N_3O_2S$ (Scheme I), the benzene and pyrrole rings that are fused to a central cyclohexadiene ring are somewhat twisted owing to the $-CH_2CH_2$ - fragment of the cyclohexadiene ring (dihedral angle between benzene and pyrrole rings is 17.3 (2) °. The benzene ring bearing the sulfamide unit is aligned at 61.6 (1) ° with respect to the pyrrole ring; its amino group is hydrogen-bond donor to the acceptor sites of neighboring molecules to generating sheets in the *ac*-plane (Table 1).

Experimental

2-Acetyl-1-tetralone (1.88 g, 10 mmol) in ethanol (50 ml) condensed with 4-hydrazinobenzenesulfonamide hydrochloride (2.2 g,10 mmol) by heating the reactants for 2 h. The mixture was allowed to cool, and the solid material was collected and recrystallized from ethanol.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, U_{iso} (H) 1.2–1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation. The amino H atoms were located in a difference Fourier, and were refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

As the two oxygen atoms showed somewhat elongated ellipsoids, their anisotropic temperature factors were restrained to be nearly isotropic.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{18}H_{17}N_3O_2S$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-(3-Methyl-4,5-dihydro-1H-benzo[g]indazol-1-yl)benzenesulfonamide

Crystal data

$C_{18}H_{17}N_3O_2S$	F(000) = 712
$M_r = 339.41$	$D_{\rm x} = 1.382 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: -P 2yn	Cell parameters from 7385 reflections
a = 4.8838 (1) Å	$\theta = 3.2 - 74.2^{\circ}$
b = 27.3894 (4) Å	$\mu = 1.89 \text{ mm}^{-1}$
c = 12.2399 (2) Å	T = 100 K
$\beta = 94.738 \ (1)^{\circ}$	Prism, orange brown
$V = 1631.67 (5) \text{ Å}^3$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	3255 independent reflections
Radiation source: SuperNova (Cu) X-ray Source	3166 reflections with $I > 2\sigma(I)$
Mirror	$R_{\rm int} = 0.018$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 74.4^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -3 \rightarrow 6$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -34 \rightarrow 33$
$T_{\min} = 0.600, \ T_{\max} = 0.703$	$l = -14 \rightarrow 15$
11808 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.184$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0755P)^{2} + 3.2939P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3255 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
226 parameters	$\Delta \rho_{max} = 0.70 \text{ e} \text{ Å}^{-3}$
14 restraints	$\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

S1	0.0376 (5)	0.0539 (6)	0.0321 (5)	0.0161 (4)	-0.0181 (3)	-0.0213 (4)
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Atomic displace	ment parameters	(\AA^2)				
112	0.577 (5)	0.7070 (ι <i>τj</i> 0.	(5)	0.071 (11)	
H2	0.547 (3)	0 7076 (,, 0. 14) 0.	829 (3)	0.041 (11)*	
H1	0.756 (10)	0.3930	7) 0.4	**** 815 (4)	0.061 (14)*	
H18	0.4500(7)	0.02110	(12) 0.	4917	0.0333 (7)	
C18	0.3430	0.0003	(12) 0.	5098 (3)	0.041	
H17	0.5745 (7)	0.02790	(12) 0.	6729	0.0344 (7)	
C17	0.7714(7) 0.59/15(7)	0.00571	(12) 0.9	6171 (3)	0.0344(7)	
C16	0.7728 0.7714 (7)	0.7255	(12) 0.	6426 (3)	0.0316 (7)	
H15	0.0728	0.09741	(14) 0.	5798	0.055*	
C15	0.8491 (8)	0.7110	(14) 0.	5616 (3)	0.032	
H14	0.7941	0.09042	(1+) 0.4 0.1	3979	0.052*	
C14	0.3037(7)	0.05251	(11) 0.4 (14) 0.4	4540 (3)	0.0275(7)	
C13	0.5657 (7)	0.7010	(11) 0.	4290 (2)	0.0293 (7)	
H12D	0.1602	0.0720	0.1	0343	0.088*	
H12A	-0.0083	0.7222	0.	1399	0.088*	
U12	-0.0683	0.09202	(15) 0.	1018 (4)	0.0580 (12)	
C12	-0.0164(11)	0.60262	(15) 0.	1018(4)	0.0407(8)	
C10	0.2932(7) 0.1870(8)	0.61727	(12) 0. (13) 0	1770(2)	0.0340(7)	
C10	0.0830 0.2032(7)	0.5878	(12) 0.	1578 (2)	0.045°	
НОР	0.4123	0.5870	0.	0149	0.045*	
С9	0.2022 (8)	0.58217	(12) 0.	0034 (2)	0.0373 (8)	
C9	0.2673	0.58217	(12) 0.	0480	0.0373 (8)	
HOA	0.0975	0.5233	0.	0486	0.037*	
	0.2724 (7)	0.53032	(12) 0.	1090 (2)	0.0312 (7)	
C7	0.3093(0)	0.52131	(11) 0. (12) 0	1939 (2)	0.0200(0)	
C7	0.5098	0.4300	(11) 0.	1010	0.037°	
С0 Н6	0.0338(7)	0.47399	(11) 0.	1616	0.0303 (7)	
П3	0.9293	0.4301	(11) 0.	2937	0.042°	
U5	0.8301 (7)	0.40774	(12) 0	2873 (3)	0.0348 (7)	
H4	1.1012	0.5004	(12) 0.4	4068	0.041*	
C4	0.9494 (7)	0.50567	(12) 0.	3544 (2) 1069	0.0338 (7)	
H3	0.8945	0.5771	0	3909	0.034*	
C3	0.8268 (6)	0.55121	(11) 0.1	3446 (2)	0.0287 (6)	
C2	0.6045 (6)	0.55949	(10) 0.1	2675 (2)	0.0260 (6)	
Cl	0.4586 (7)	0.60588	(11) 0.2	2510 (2)	0.0286 (6)	
N3	0.2861 (7)	0.68173	(10) 0.1	2717 (2)	0.0430 (8)	
N2	0.4538 (6)	0.64587	(9) 0.1	3184 (2)	0.0325 (6)	
N1	0.7213 (6)	0.71611	(10) 0.	8343 (2)	0.0316 (6)	
02	1.1649 (6)	0.69481	(19) 0.	7792 (3)	0.0936 (15)	
01	0.8478 (8)	0.63001	(10) 0.	8387 (2)	0.0718 (11)	
S1	0.89421 (18)	0.67458	(3) 0.	78209 (7)	0.0424 (3)	

0.0337 (17)

0.001 (2)

0.0361 (14)

0.072 (2)

01

02

0.134 (3)

0.0354 (16)

0.0376 (14)

0.172 (4)

-0.0086 (11)

-0.070 (3)

-0.0418 (17)

-0.0045 (15)

supplementary materials

N1	0.0401 (16)	0.0257 (13)	0.0280 (13)	-0.0022 (11)	-0.0041 (11)	-0.0051 (10)
N2	0.0532 (17)	0.0240 (12)	0.0185 (12)	0.0055 (11)	-0.0070 (11)	0.0000 (9)
N3	0.069 (2)	0.0290 (14)	0.0290 (15)	0.0111 (14)	-0.0105 (14)	0.0018 (11)
C1	0.0418 (17)	0.0252 (14)	0.0182 (13)	-0.0001 (12)	-0.0021 (12)	0.0003 (11)
C2	0.0346 (16)	0.0257 (14)	0.0173 (13)	-0.0009 (12)	-0.0006 (11)	-0.0018 (11)
C3	0.0326 (16)	0.0316 (15)	0.0210 (14)	0.0013 (12)	-0.0039 (11)	-0.0035 (11)
C4	0.0394 (18)	0.0405 (17)	0.0208 (14)	0.0080 (14)	-0.0018 (12)	-0.0006 (12)
C5	0.0451 (19)	0.0299 (15)	0.0296 (16)	0.0081 (14)	0.0041 (14)	0.0006 (12)
C6	0.0451 (18)	0.0264 (14)	0.0203 (14)	-0.0047 (13)	0.0041 (12)	-0.0035 (11)
C7	0.0313 (15)	0.0293 (14)	0.0175 (13)	-0.0038 (12)	0.0024 (11)	-0.0023 (11)
C8	0.0371 (17)	0.0366 (16)	0.0189 (14)	-0.0040 (13)	-0.0039 (12)	-0.0048 (12)
C9	0.051 (2)	0.0397 (18)	0.0191 (14)	0.0002 (15)	-0.0066 (13)	-0.0019 (13)
C10	0.0474 (19)	0.0321 (16)	0.0211 (14)	-0.0003 (14)	-0.0058 (13)	0.0024 (12)
C11	0.059 (2)	0.0350 (17)	0.0256 (16)	0.0056 (16)	-0.0105 (15)	0.0034 (13)
C12	0.083 (3)	0.043 (2)	0.044 (2)	0.016 (2)	-0.026 (2)	0.0050 (17)
C13	0.0408 (17)	0.0245 (14)	0.0211 (14)	0.0039 (12)	-0.0056 (12)	-0.0041 (11)
C14	0.057 (2)	0.0407 (19)	0.0329 (18)	-0.0142 (17)	0.0063 (16)	-0.0043 (15)
C15	0.046 (2)	0.049 (2)	0.044 (2)	-0.0169 (17)	0.0021 (16)	-0.0193 (17)
C16	0.0301 (16)	0.0381 (16)	0.0248 (15)	0.0071 (13)	-0.0074 (12)	-0.0104 (12)
C17	0.0456 (19)	0.0330 (16)	0.0227 (15)	0.0008 (14)	-0.0085 (13)	-0.0001 (12)
C18	0.0418 (18)	0.0312 (15)	0.0247 (15)	-0.0050 (13)	-0.0098 (13)	-0.0008 (12)

Geometric parameters (Å, °)

S1—O1	1.431 (3)	С7—С8	1.521 (4)
S1—O2	1.437 (4)	C8—C9	1.528 (5)
S1—N1	1.582 (3)	C8—H8A	0.9900
S1—C16	1.778 (3)	C8—H8B	0.9900
N1—H1	0.882 (11)	C9—C10	1.502 (4)
N1—H2	0.880 (11)	С9—Н9А	0.9900
N2—N3	1.373 (4)	С9—Н9В	0.9900
N2—C1	1.372 (4)	C10—C11	1.402 (5)
N2—C13	1.428 (4)	C11—C12	1.503 (5)
N3—C11	1.334 (5)	C12—H12A	0.9800
C1—C10	1.377 (4)	C12—H12B	0.9800
C1—C2	1.463 (4)	C12—H12C	0.9800
C2—C7	1.413 (4)	C13—C14	1.377 (5)
C2—C3	1.398 (4)	C13—C18	1.381 (4)
C3—C4	1.385 (4)	C14—C15	1.387 (5)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.385 (5)	C15—C16	1.395 (5)
C4—H4	0.9500	C15—H15	0.9500
C5—C6	1.392 (5)	C16—C17	1.367 (5)
С5—Н5	0.9500	C17—C18	1.382 (4)
C6—C7	1.390 (4)	C17—H17	0.9500
С6—Н6	0.9500	C18—H18	0.9500
O1—S1—O2	121.6 (3)	С9—С8—Н8В	108.8
O1—S1—N1	107.85 (18)	H8A—C8—H8B	107.7
O2—S1—N1	104.8 (2)	C10—C9—C8	108.2 (2)

O1—S1—C16	107.07 (16)	С10—С9—Н9А	110.1
O2—S1—C16	105.50 (19)	С8—С9—Н9А	110.1
N1—S1—C16	109.67 (15)	С10—С9—Н9В	110.1
S1—N1—H1	116 (3)	С8—С9—Н9В	110.1
S1—N1—H2	109 (3)	Н9А—С9—Н9В	108.4
H1—N1—H2	116 (4)	C1-C10-C11	106.4 (3)
N3—N2—C1	111.1 (2)	C1—C10—C9	120.5 (3)
N3—N2—C13	118.3 (2)	C11—C10—C9	133.1 (3)
C1—N2—C13	130.1 (3)	N3—C11—C10	110.7 (3)
C11—N3—N2	105.6 (3)	N3—C11—C12	120.8 (3)
N2-C1-C10	106.2 (3)	C10-C11-C12	128.5 (3)
N2-C1-C2	130.0 (3)	C11—C12—H12A	109.5
C10—C1—C2	123.8 (3)	C11—C12—H12B	109.5
C7—C2—C3	119.8 (3)	H12A—C12—H12B	109.5
C7—C2—C1	115.0 (3)	C11—C12—H12C	109.5
C3—C2—C1	125.2 (3)	H12A—C12—H12C	109.5
C4—C3—C2	120.7 (3)	H12B—C12—H12C	109.5
С4—С3—Н3	119.6	C14—C13—C18	120.8 (3)
С2—С3—Н3	119.6	C14—C13—N2	119.3 (3)
C5—C4—C3	119.8 (3)	C18—C13—N2	119.9 (3)
C5—C4—H4	120.1	C13—C14—C15	119.6 (3)
С3—С4—Н4	120.1	C13—C14—H14	120.2
C4—C5—C6	119.9 (3)	C15—C14—H14	120.2
С4—С5—Н5	120.1	C14—C15—C16	119.2 (3)
С6—С5—Н5	120.1	C14—C15—H15	120.4
C7—C6—C5	121.4 (3)	С16—С15—Н15	120.4
С7—С6—Н6	119.3	C17—C16—C15	120.8 (3)
С5—С6—Н6	119.3	C17—C16—S1	118.7 (3)
C6—C7—C2	118.4 (3)	C15-C16-S1	120.5 (3)
C6—C7—C8	121.2 (3)	C16—C17—C18	119.8 (3)
C2—C7—C8	120.4 (3)	С16—С17—Н17	120.1
С7—С8—С9	113.8 (3)	С18—С17—Н17	120.1
С7—С8—Н8А	108.8	C17—C18—C13	119.8 (3)
С9—С8—Н8А	108.8	C17-C18-H18	120.1
С7—С8—Н8В	108.8	C13—C18—H18	120.1
C1—N2—N3—C11	-0.4 (4)	C8—C9—C10—C1	34.6 (4)
C13—N2—N3—C11	-173.2 (3)	C8—C9—C10—C11	-147.1 (4)
N3—N2—C1—C10	1.3 (4)	N2—N3—C11—C10	-0.7 (4)
C13—N2—C1—C10	173.0 (3)	N2—N3—C11—C12	177.0 (4)
N3—N2—C1—C2	-179.2 (3)	C1-C10-C11-N3	1.5 (4)
C13—N2—C1—C2	-7.5 (6)	C9—C10—C11—N3	-177.0 (4)
N2-C1-C2-C7	163.9 (3)	C1-C10-C11-C12	-176.0 (4)
C10—C1—C2—C7	-16.6 (5)	C9—C10—C11—C12	5.5 (7)
N2-C1-C2-C3	-17.6 (5)	N3—N2—C13—C14	-63.9 (5)
C10—C1—C2—C3	161.8 (3)	C1—N2—C13—C14	124.9 (4)
C7—C2—C3—C4	-2.2 (5)	N3—N2—C13—C18	114.7 (4)
C1—C2—C3—C4	179.4 (3)	C1—N2—C13—C18	-56.5 (5)
C2-C3-C4-C5	-0.4 (5)	C18—C13—C14—C15	0.2 (6)
C3—C4—C5—C6	2.2 (5)	N2-C13-C14-C15	178.8 (3)

supplementary materials

C4—C5—C6—C7	-1.5 (5)	C13-C14-C15-C16	-0.3 (6)
C5—C6—C7—C2	-1.1 (5)	C14-C15-C16-C17	0.3 (6)
C5—C6—C7—C8	-179.7 (3)	C14-C15-C16-S1	-178.1 (3)
C3—C2—C7—C6	2.9 (4)	O1—S1—C16—C17	18.0 (3)
C1—C2—C7—C6	-178.5 (3)	O2—S1—C16—C17	148.8 (3)
C3—C2—C7—C8	-178.5 (3)	N1—S1—C16—C17	-98.8 (3)
C1—C2—C7—C8	0.1 (4)	O1—S1—C16—C15	-163.6 (3)
C6—C7—C8—C9	-148.2 (3)	O2—S1—C16—C15	-32.7 (4)
C2—C7—C8—C9	33.2 (4)	N1—S1—C16—C15	79.7 (3)
C7—C8—C9—C10	-48.0 (4)	C15—C16—C17—C18	-0.3 (5)
N2-C1-C10-C11	-1.6 (4)	S1-C16-C17-C18	178.2 (3)
C2-C1-C10-C11	178.8 (3)	C16-C17-C18-C13	0.2 (5)
N2-C1-C10-C9	177.1 (3)	C14-C13-C18-C17	-0.2 (5)
C2-C1-C10-C9	-2.5 (5)	N2-C13-C18-C17	-178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
N1—H1···N3 ⁱ	0.88 (1)	2.05 (1)	2.925 (4)	173 (5)
N1—H2···O2 ⁱⁱ	0.88 (1)	1.95 (2)	2.806 (4)	165 (4)
Symmetry codes: (i) $x+1/2$, $-y+3/2$, $z+1/2$; (ii) $x-1$, y , z .				

